
Security of Genus 3 Curves

Kim Laine
Joint work with Kristin Lauter

Microsoft Research, USA

September 28, 2015
ECC 2015, Bordeaux



Table of Contents

1 Basics

2 Our Variant of Diem’s Index Calculus

3 Complexity

4 Time-Memory Trade-offs

5 Conclusions

2 / 40



Basics



Basics

Recall:

• C/Fq a curve of genus 3

• JacC (Fq) is an abelian group of size roughly q3

• Fix P0 ∈ C (Fq)

• Elements of JacC (Fq) (reduced representation):{
[P1] + [P2] + [P3]− 3[P0] | Pi ∈ C (Fq)

}
invariant under Frobq

• Basically: Points of JacC (Fq) are triples of points on C

4 / 40



Basics

Question: Is JacC (Fq) good for DLP-based crypto?

• Pollard rho complexity: Õ(q3/2) field multiplications

• For 128 bits of security against Pollard rho: log2 q ≈ 85

• Use this for DLP-based crypto with small fields?

5 / 40



Basics

Hyperelliptic vs. Non-Hyperelliptic in Genus 3:

Non-Hyperelliptic curves

• Exactly the smooth plane quartics over Fq

• Most genus 3 curves
• Diem: Index calculus complexity Õ(q)
• For security log2 q ≥ 128 ???

Hyperelliptic curves

• (Singular) plane models y2 = P(x), P(x) a degree 7 polynomial
• Easier arithmetic
• Gaudry, Thomé, Thériault, Diem: Index calculus Õ(q4/3)
• For security log2 q > 95 ???

6 / 40



Basics

Isogeny attacks:

C/Fq hyperelliptic genus 3

Explicit isogeny f : JacC → A
• A/Fq a 3-dimensional principally polarized abelian variety

• A almost certainly isomorphic to Jacobian of some
non-hyperelliptic genus 3 curve C ′

• Difficult but possible to construct such maps explicitly (Ben
Smith, Damien Robert, David Lubicz, etc.)

Attack the non-hyperelliptic problem in time Õ(q)

But how feasible is the Õ(q)-attack for practical size q?

7 / 40



Basics

Hyperelliptic vs. Non-Hyperelliptic in Genus 3:

Non-Hyperelliptic curves

• Exactly the smooth plane quartics over Fq

• Most genus 3 curves
• Claus Diem: Index calculus complexity Õ(q)
• For security log2 q ≥ 128 ???

Hyperelliptic curves

• (Singular) plane models y2 = P(x), P(x) a degree 7 polynomial
• Easier arithmetic
• Index calculus complexity Õ(q4/3)
• Isogeny attacks reduce complexity to Õ(q)
• For security log2 q > 128 ???

8 / 40



Our Variant of Diem’s Index Calculus



Our Variant of Diem’s Index Calculus

• C/Fq non-hyperelliptic genus 3

• On JacC (Fq) consider DLP D1 = x · D2 where

D1 := [P1
1 ] + [P1

2 ] + [P1
3 ]− 3[P0]

D2 := [P2
1 ] + [P2

2 ] + [P2
3 ]− 3[P0]

• For simplicity, suppose P j
i ∈ C (Fq)

• For simplicity, suppose subgroup 〈D2〉 has prime order

• Suppose the DLP has a solution.

10 / 40



Our Variant of Diem’s Index Calculus

Theorem 1 (Diem)

There is a probabilistic algorithm for solving the DLP using Õ(q)
operations in JacC (Fq).

• Several generalization and variations exist (by Diem and others).

• In genus 3 all have complexity Õ(q).

• Double Large Prime Index Calculus

11 / 40



Our Variant of Diem’s Index Calculus

Double large prime index calculus briefly:

1 DLP Q = x · P in abelian group G , Q,P ∈ G

2 Choose subset of elements F called factor base, so that
Q,P ∈ F

3 Elements in G \ F are called large primes

4 Collect linear relations in G with at most two large primes

5 When possible, eliminate the two large primes from the relations
to produce full relations, involving only factor base elements

6 After enough full relations (involving P ,Q) have been found, use
linear algebra to express Q in terms of P

12 / 40



Our Variant of Diem’s Index Calculus

The case of non-hyperelliptic genus 3:

• F a subset of Õ(q1/2) points of C (Fq) instead of elements of
JacC (Fq) (Note: #C (Fq) ≈ q)

• So DLP is a formal sum of points in C (Fq)

• Key idea: To find relations, intersect the curve with a line (4
points of intersection)

• Sum of points in the intersection is “zero” (roughly speaking)

• Need relation involving F , so form lines through two F -points

• With high probability other two points are also in C (Fq); most
likely not in F

13 / 40



Our Variant of Diem’s Index Calculus

Theorem 2 (Diem-Thomé)

Let L/Fq be a generic line in P2 through two Fq-points of C . Then
L ∩ C consists of four Fq-points with probability 1/2 + O(q−1/2).

Intersection operation: Given two Fq-points of C and line L
through them, compute L ∩ C . With probability 1/2 return the two
new Fq-points on C .

The information in these intersections is stored as a graph.

14 / 40



Our Variant of Diem’s Index Calculus

Special vertex (represents factor base elements)

15 / 40



Our Variant of Diem’s Index Calculus

Intersection L ∩ C:

Fi, Fj, F, L where Fi, Fj, F ∈ F

L

15 / 40



Our Variant of Diem’s Index Calculus

15 / 40



Our Variant of Diem’s Index Calculus

15 / 40



Our Variant of Diem’s Index Calculus

15 / 40



Our Variant of Diem’s Index Calculus

15 / 40



Our Variant of Diem’s Index Calculus

Intersection L ∩ C:

Fi, Fj, Li, Lj where Li ∈ V, Lj /∈ V

Li

Lj

15 / 40



Our Variant of Diem’s Index Calculus

15 / 40



Our Variant of Diem’s Index Calculus

15 / 40



Our Variant of Diem’s Index Calculus

15 / 40



Our Variant of Diem’s Index Calculus

15 / 40



Our Variant of Diem’s Index Calculus

15 / 40



Our Variant of Diem’s Index Calculus

15 / 40



Our Variant of Diem’s Index Calculus

15 / 40



Our Variant of Diem’s Index Calculus

Intersection L ∩ C:

Fi, Fj, Li, Lj where Li, Lj ∈ V

Li

Lj

15 / 40



Our Variant of Diem’s Index Calculus

15 / 40



Our Variant of Diem’s Index Calculus

15 / 40



Our Variant of Diem’s Index Calculus

15 / 40



Our Variant of Diem’s Index Calculus

15 / 40



Our Variant of Diem’s Index Calculus

15 / 40



Our Variant of Diem’s Index Calculus

Our variant:

• Construct F iteratively starting from a much smaller initial set
of points

• Graph becomes wider and shallower

• Options:

1 Keep building graph until all relations are found
2 Stop building graph at some point and continue with only

relation search

16 / 40



Our Variant of Diem’s Index Calculus

Constructing factor base iteratively:

1 Let λ be a positive root of λ exp (4λ8) = q1/8

2 Note: For reasonable size q, 1 < λ < 1.2

3 Choose RP a set of
⌈

4λ q1/8
⌉
Fq-points on C

4 Let for now
F := RP ∪ {P i

j } ∪ {P0}

Recall: P i
j , P0 are the C (Fq)-points appearing in the DLP

17 / 40



Our Variant of Diem’s Index Calculus

18 / 40



Our Variant of Diem’s Index Calculus

Intersection L ∩ C:
Fi, Fj, F, B where Fi, Fj ∈ RP
Added F to F .

B

18 / 40



Our Variant of Diem’s Index Calculus

18 / 40



Our Variant of Diem’s Index Calculus

18 / 40



Our Variant of Diem’s Index Calculus

18 / 40



Our Variant of Diem’s Index Calculus

18 / 40



Our Variant of Diem’s Index Calculus

18 / 40



Our Variant of Diem’s Index Calculus

18 / 40



Our Variant of Diem’s Index Calculus

18 / 40



Our Variant of Diem’s Index Calculus

18 / 40



Our Variant of Diem’s Index Calculus

Base vertices

18 / 40



Our Variant of Diem’s Index Calculus

19 / 40



Our Variant of Diem’s Index Calculus

Intersection L ∩ C:
Bi, Bj, F, T where Bi, Bj ∈ B
Added F to F .

Bi

Bj

T

19 / 40



Our Variant of Diem’s Index Calculus

19 / 40



Our Variant of Diem’s Index Calculus

19 / 40



Our Variant of Diem’s Index Calculus

19 / 40



Our Variant of Diem’s Index Calculus

19 / 40



Our Variant of Diem’s Index Calculus

19 / 40



Our Variant of Diem’s Index Calculus

19 / 40



Our Variant of Diem’s Index Calculus

19 / 40



Our Variant of Diem’s Index Calculus

19 / 40



Our Variant of Diem’s Index Calculus

Top triangle vertices (not all drawn)

19 / 40



Our Variant of Diem’s Index Calculus

• Sizes of the various sets:

#RP = Õ(q1/8) , #B = Õ(q1/4) , #F = Õ(q1/2)

• Use F as before to build graph and construct full relations

• Graph contains already Õ(q1/2) points so grows faster than in
traditional approach

• Graph is very wide near the root (results in sparser matrix)

20 / 40



Our Variant of Diem’s Index Calculus

21 / 40



Our Variant of Diem’s Index Calculus

Intersection L ∩ C:
Fi, Fj, Li, Lj where Li ∈ V, Lj /∈ V

21 / 40



Our Variant of Diem’s Index Calculus

21 / 40



Our Variant of Diem’s Index Calculus

21 / 40



Our Variant of Diem’s Index Calculus

21 / 40



Our Variant of Diem’s Index Calculus

21 / 40



Our Variant of Diem’s Index Calculus

21 / 40



Our Variant of Diem’s Index Calculus

21 / 40



Our Variant of Diem’s Index Calculus

Intersection L ∩ C:
Fi, Fj, Li, Lj where Li, Lj ∈ V

Li

Lj

21 / 40



Our Variant of Diem’s Index Calculus

21 / 40



Our Variant of Diem’s Index Calculus

21 / 40



Our Variant of Diem’s Index Calculus

21 / 40



Our Variant of Diem’s Index Calculus

21 / 40



Our Variant of Diem’s Index Calculus

21 / 40



Our Variant of Diem’s Index Calculus

21 / 40



Our Variant of Diem’s Index Calculus

21 / 40



Our Variant of Diem’s Index Calculus

21 / 40



Our Variant of Diem’s Index Calculus

21 / 40



Our Variant of Diem’s Index Calculus

Produced a full relation!

21 / 40



Our Variant of Diem’s Index Calculus

Linear algebra step:

1 Build a matrix as follows:

• Elements of F label columns

• Coefficients of full relations give the rows

• For the first two rows use the divisors D1 and D2

2 Use linear algebra modulo the order of the cyclic subgroup of the
Jacobian to find a linear combination of the rows that sums to 0
and involves the first and the second row. If γ1 and γ2 are the
coefficients of the first and the second row, compute

x ≡ −γ1

γ2
.

3 Output x

22 / 40



Our Variant of Diem’s Index Calculus

Two theorems:

Theorem 3 (L.-Lauter)

Under some heuristic assumptions and if q is large enough, we can
expect the algorithm to terminate successfully (and return the
discrete logarithm x). The number of pairs of factor base elements
will be just right. The size of the factor base will be approximately
4λ4 q1/2 and the number of vertices in the graph at the end will be
approximately Nmax := 4λ2 q3/4.

Theorem 4 (L.-Lauter)

The average row weight of the matrix (the average number of
non-zero entries on a row) will be ≤ 18− 8λ + ln q.

23 / 40



Complexity



Complexity

Implementation and experiments:

• Implemented in C++ (with some Magma)

• Used slightly oversized F to guarantee success

• Total number of field multiplications1

MTotal = (7 log2 q + 13) · 8λ8 q

• Locally, for instance if q ∈ [270, 2120]:

MTotal ≈ 1.23 · log2
2(q) · q

1In our implementation
25 / 40



Complexity

Experimental results:

q λ logq #F logq MTotal (th/pr) logq Nmax (th) Mem (th)

217 0.89 > 0.58 1.51/1.51 0.85 8 MB
219 0.90 > 0.57 1.47/1.47 0.84 22 MB
221 0.91 > 0.57 1.44/1.44 0.83 65 MB
223 0.92 > 0.57 1.41/1.41 0.83 187 MB
225 0.93 > 0.56 1.39/1.38 0.82 538 MB
227 0.94 > 0.56 1.37/1.36 0.82 1550 MB

Practical performance corresponds closely to theoretical predictions!

26 / 40



Complexity

Bigger examples (th):

q λ logq #F logq Nmax logq MTotal log2 MTotal Mem

230 0.95 0.56 0.81 1.34 40.21 7.4 GB
240 0.98 0.55 0.80 1.27 51.00 1430 GB
250 1.01 0.54 0.79 1.23 61.62 267 TB
260 1.03 0.54 0.78 1.20 72.13 50490 TB
270 1.05 0.53 0.78 1.18 82.56 1.90 · 107 TB
280 1.07 0.53 0.78 1.16 92.94 3.56 · 109 TB
290 1.09 0.53 0.77 1.15 103.28 6.62 · 1011 TB
2100 1.10 0.53 0.77 1.14 113.58 1.2 · 1014 TB
2110 1.11 0.52 0.77 1.13 123.85 2.28 · 1016 TB
2115 1.12 0.52 0.77 1.12 128.98 3.10 · 1017 TB
2120 1.13 0.52 0.77 1.12 134.10 4.22 · 1018 TB
2140 1.15 0.52 0.77 1.10 154.54 2.16 · 1023 TB
2160 1.17 0.52 0.77 1.09 174.92 7.29 · 1027 TB
2180 1.18 0.52 0.76 1.08 195.26 8.43 · 1031 TB
2200 1.20 0.52 0.76 1.08 215.56 1.10 · 1037 TB
2220 1.21 0.51 0.76 1.07 235.84 3.71 · 1041 TB
2240 1.23 0.51 0.76 1.07 256.09 1.24 · 1046 TB

27 / 40



Complexity

Linear algebra:

• Expected average row weight: west := 18− 8 lnλ + ln q

• Complexity of linear algebra: O (west · (#F)2)

• Linear algebra complexity is comparable to relation search
complexity

28 / 40



Complexity

Linear algebra (th):

q log2 west log2 #F Lin. alg. MTotal

230 5.29 16.70 ≈ 239 ≈ 240

240 5.52 21.90 ≈ 249 ≈ 251

250 5.72 27.06 ≈ 260 ≈ 262

260 5.89 32.18 ≈ 270 ≈ 272

270 6.05 37.29 ≈ 281 ≈ 283

280 6.19 42.39 ≈ 291 ≈ 293

290 6.32 47.47 ≈ 2101 ≈ 2103

2100 6.44 52.55 ≈ 2112 ≈ 2114

2110 6.55 57.62 ≈ 2122 ≈ 2124

2115 6.60 60.15 ≈ 2127 ≈ 2129

2120 6.65 62.68 ≈ 2132 ≈ 2134

2140 6.83 72.79 ≈ 2152 ≈ 2155

2160 7.00 82.89 ≈ 2173 ≈ 2175

2180 7.14 92.97 ≈ 2193 ≈ 2195

2200 7.28 103.05 ≈ 2213 ≈ 2216

2220 7.40 113.12 ≈ 2234 ≈ 2236

2240 7.51 123.18 ≈ 2254 ≈ 2256

29 / 40



Time-Memory Trade-offs



Time-Memory Trade-offs

Dealing with the memory cost:

• Computational complexity is impressive

• Memory cost makes the algorithm unusable for large q

• We can stop graph building at any point to restrict memory cost

• But bigger graph size gives better computational complexity

Stop adding new vertices when graph has size χ q3/4 ?

(Remark: χ ≤ 4λ2)

31 / 40



Time-Memory Trade-offs

Bounding the size of the graph:

• Let η be the positive real root of

2η2 exp
(
4η8 − 4η4/χ2 + 1/4

)
= χ1/2 q1/8

• RP now a set of 4η q1/8 points in C (Fq)

• Proceed as usual, but restrict Nmax to χ q3/4

• The size of F will be 4η2 q1/2

32 / 40



Time-Memory Trade-offs

Theorem 5 (L.-Lauter)

If q is large enough, we can expect the algorithm to terminate
successfully.

The average row weight of the matrix will be approximately

wχ
est := 20− χ2

8η4
− 4 ln

(
4η4
)

+ ln q + 4 lnχ .

Remark: As a function of χ, η has a global minimum at a point
where χ = 4η2, which recovers the original case (the definition of λ).
This is expected since an unbounded graph should yield the best
computational complexity.

33 / 40



Time-Memory Trade-offs

Why do this?

Relation search complexity compared to unrestricted graph case:

q = 260, 280, 2100, 2120, 2140, 2160, 2180, 2200

0.2 0.4 0.6 0.8 1
Ratio of memory cost to worst: χ/(4λ2 )

2

4

6

8

10

R
a
ti

o
 o

f 
R

S
 c

o
m

p
le

x
it

y
 t

o
 b

e
st

: 
(η
/λ

)8

34 / 40



Time-Memory Trade-offs

Why do this?

Linear algebra complexity compared to unrestricted graph case:

q = 260, 280, 2100, 2120, 2140, 2160, 2180, 2200

0.2 0.4 0.6 0.8 1
Ratio of memory cost to worst: χ/(4λ2 )

1

1.5

2

2.5

3

3.5

4

R
a
ti

o
 o

f 
LA

 c
o
m

p
le

x
it

y
 t

o
 b

e
st

:
(w

χ es
t/
w

es
t)
·(η
/λ

)8

35 / 40



Time-Memory Trade-offs

Parallelize memory cost by dividing graph among K
computers:

• K computers perform the main task independently

• Memory cost per computer ≈ (1/
√
K ) · (case of K = 1)

• Total memory cost ≈
√
K · (case of K = 1)

• Running time increases slightly

• Can combine graph bounding with parallelization

36 / 40



Conclusions



Conclusions

Example 6

Let q = 260, K = 100 and χ/(4λ2
K ) = 1/50. Then:

• Complexity per computer ≈ 279

• The memory cost per computer ≈ 100 TB

• No bounding/parallelization:

• Complexity ≈ 272

• Memory cost ≈ 50000 TB

38 / 40



Conclusions

Final words:

• Index calculus works reasonably well up to q ≈ 260

• For q ≥ 270 memory cost extremely high without bounding

• Generalizations to higher genus: Thériault and Oyono (work
in progress)

• Combine with recent improved sieving method of Vitse-Wallet
(LatinCrypt 2015)

39 / 40



Thank you for listening!

Questions?


	Basics
	Our Variant of Diem's Index Calculus
	Complexity
	Time-Memory Trade-offs
	Conclusions

