Machine Learning on Encrypted Data

Kim Laine
Microsoft Research, Redmond WA

January 5, 2017
Two Tracks

- **Evaluate already existing model on private data**
 - Privacy of data
 - Privacy of model
 - Who gets the result?
 - Many data owners?

- **Train new model on private data**
 - Who gets the resulting model?
 - Privacy of training data
 - What does model leak?

Many data owners with little data
Few data owners with lots of data
Two Tracks

- Evaluate already existing model on private data
 - Privacy of data
 - Privacy of model
 - Who gets the result?
 - Many data owners?

- Train new model on private data
 - Who gets the resulting model?
 - Privacy of training data
 - What does model leak?

Many data owners with little data
Few data owners with lots of data
Example: Prediction as a Service

Medical
Genomic
Financial

Neural Networks, Decision Trees, Linear Mixed Models, etc.
ABSTRACT

We propose a fully homomorphic encryption scheme – i.e., a scheme that allows one to evaluate circuits over encrypted data without being able to decrypt. Our solution comes in three steps. First, we provide a general result – that, to construct an encryption scheme that permits evaluation of arbitrary circuits, it suffices to construct an encryption scheme that can evaluate (slightly augmented versions of) its own decryption circuit; we call a scheme that can evaluate its (augmented) decryption circuit bootstrappable.

Next, we describe a public key encryption scheme using ideal lattices that is almost bootstrappable. Lattice-based cryptosystems typically have decryption algorithms with low

duced by Rivest, Adleman and Dertouzos [54] shortly after the invention of RSA by Rivest, Adleman and Shamir [55]. Basic RSA is a multiplicatively homomorphic encryption scheme – i.e., given RSA public key \(pk = (N, e) \) and ciphertexts \(\{\psi_i \leftarrow \pi_i^e \mod N\} \), one can efficiently compute \(\prod_i \psi_i = (\prod_i \pi_i)^e \mod N \), a ciphertext that encrypts the product of the original plaintexts. Rivest et al. [54] asked a natural question: What can one do with an encryption scheme that is fully homomorphic: a scheme \(E \) with an efficient algorithm \(\text{Evaluate}_E \) that, for any valid public key \(pk \), any circuit \(C \) (not just a circuit consisting of multiplicative gates), and any ciphertexts \(\psi_i \leftarrow \text{Encrypt}_E(pk, \pi_i) \), outputs

\[
\psi \leftarrow \text{Evaluate}_E(pk, C, \psi_1, \ldots, \psi_t),
\]

Craig Gentry
Stanford University and IBM Watson
cgentry@cs.stanford.edu
Fast for certain types of models

Low-degree polynomial models (integral features) needed for HE

For performance want to use “CRT batching” with RLWE-based schemes

\[
\mathbb{Z}_t[x] / (x^n + 1) \approx \mathbb{Z}_t^n
\]
Fast for certain types of models

Linear regression, linear mixed models
- Useful in genomics
- Super fast to evaluate on homomorphically encrypted data
- Demonstrated on realistic size examples
- Easy to utilize batching even for single prediction

Other intelligible polynomial models
- Demonstrated for realistic medical risk prediction
- Batching may or may not be easy to utilize
Less fast for other types of models

Neural networks
- Very powerful, high accuracy for difficult problems
- Homomorphic evaluation challenging due to size
- Depth limited with leveled fully homomorphic encryption
- Activation functions need to be low-degree polynomials
- Demonstrated (C)NN on MNIST data (hand-written digit recognition)
 - CryptoNets
 - \(O(10\text{ seconds})\) for 4096 simultaneous predictions on encrypted data
 - Great *amortized* performance
 - Problem: How to use batching more efficiently?
 - Problem: How to extend to bigger NNs?
Decision Trees

• Very powerful
• Need to always evaluate entire tree homomorphically
• Conditional statements based on integer comparison hard
 ▪ Bit-wise encoding: comparisons easy, arithmetic hard
 ▪ Integer-wise encoding: comparisons hard, arithmetic easy
 ▪ Trees require both comparisons and arithmetic
• Could some pre-computation help with evaluating tree?
• Simplify by assuming structure of tree public but thresholds not?

Not currently feasible for some models
Homomorphic Encryption

Pros
• Protects the privacy of the data owner
• Protects the privacy of the model owner (evaluator)
• Multiple data owners possible
• In best case can use CRT batching for good performance

Cons
• Currently needs to be applied and tuned on case-by-case basis
• Performance depends hugely on model
• Difficulty of integer comparisons is a major issue
Two Tracks

- Evaluate already existing model on private data
 - Privacy of data
 - Privacy of model
 - Who gets the result?
 - Many data owners?

- Train new model on private data
 - Who gets the resulting model?
 - Privacy of training data
 - What does model leak?

Many data owners with little data
Few data owners with lots of data
Two Tracks

- **Evaluate already existing model on private data**
 - Privacy of data
 - Privacy of model
 - Who gets the result?
 - Many data owners?

- **Train new model on private data**
 - Who gets the resulting model?
 - Privacy of training data
 - What does model leak?

Many data owners with little data
Few data owners with lots of data
Training on Private Data

• Much more difficult than evaluating existing models
• Requires extremely high degree polynomials (iteration)
 ▪ HE possibly not practical

• Secure Multi-Party Computation better tool
 ▪ Two or more parties compute a function on private inputs
 ▪ One or more of parties gets output
 ▪ Few data owners with lots of data, local computation possible?
• Many data owners with little data hardest scenario?

• Often not enough to keep training data private during training
• Need differential privacy to prevent model from leaking information
Lots of interesting questions

- Algorithmic problems that the ML community has not had to deal with
- New types of ML models needed?
- How to use batching in HE better?
- Formalize and classify scenarios in privacy-preserving training
- How to utilize local computation better?
- Can we do anything realistic with many data owners with little data?
Thank You!

Questions?

Contact: kim.laine@microsoft.com